Nonadiabatic quantum state manipulation of superconducting structures

Yuri Pashkin

FIAN / NEC / RIKEN

Oleg Astafiev Tsuyoshi Yamamoto Yasunobu Nakamura Jaw-Shen Tsai	NEC & RIKEN
Dmitri Averin	- SUNY at Stony Brook
Todd Tilma Franco Nori	- RIKEN & UM - RIKEN & UM

Why quantum computers?

Shrinking electronics

Electronics have been getting smaller and faster

- Moore's law: computer performance doubles every 18 months
- atomic levels will be reached in ?? Years

R. Feynmann (1985):

"it seems that the laws of physics present no barrier to reducing the size of computers until bits are the size of atoms, and quantum behavior holds sway"

Complexity of computational problems

Complexity of a problem can be: (N = number of digits in input) polynomial $N_{op} \propto N^{a}$

non-polynomial $N_{op} \propto exp(N)$

Computational time is proportional to the number of operations

Ex: Factorization of an integer in prime factors is NP problem We know how to solve the problem but we do not have time!

Power of QC

Factorization of large integers (N digits)

<u>Classical algorithms:</u>

N = 129	8 months (1994)
N = 250	10 ⁶ years (estimated)
N = 1000	10 ²⁵ years (estimated

Quantum	algorithm	(P.	Shor	, 1994`):
	3	•			

N = 1000	a few seconds
----------	---------------

Hard computational problems

- factorization of large numbers --> Shor's algoritm
- database search --> Grover's algorithm
- graph isomorphism
- travelling salesman
- tailor's problem

Main features of QC

qu-bits:
$$\begin{bmatrix} 1 \\ 0 \end{bmatrix} \quad \begin{vmatrix} \psi \\ 0 \end{vmatrix} = \alpha |0\rangle + \beta |1\rangle \quad \begin{vmatrix} 0 \\ 1 \end{vmatrix} \quad \text{with probability } |\alpha|^2 \\ |\alpha|^2 + |\beta|^2 = 1 \quad \begin{vmatrix} 1 \\ 1 \end{vmatrix} \quad \text{with probability } |\beta|^2$$

qu-registers: a set of qubits, N qubits --> 2^N states

qu-gates: input - superposition of states

N - bit register represents 2^N states --> quantum parallelism Any operation is performed on all the states at the same time --> exponential amount of computational space with linear amount of physical space

To build a QC we need: (DiVincenzo criteria)

scalable qubits = two-level quantum systems initialization = prepare qubit in a given state state manipulation read-out quantum logic gates

"long" coherence time ($\tau \gg 1/f_{clock}$)

Two-level systems

non solid-state

- atoms
- ions

•

- nuclear spins
- photons

solid-state

- · RF SQUID
- · 3J SQUID
- single J junction
- quantum dots

•

coherence easier

coupling easier

Challenge: coupling vs. decoherence

Experimental challenge: couple qubits to each other, control, & measure not noise and dissipation

Josephson-junction-based qubits

Cooper-pair box

- a single artificial two-level system
- $\sim 10^8$ conduction electrons in the box

```
M. Büttiker, 1987
V. Bouchiat et al, 1995
\Delta > E_C
4E_C > E_I >> kT
```


Charge qubit based on Cooper-pair box

Y. Nakamura et al, 1999

Final state read-out

Josephson-quasiparticle cycle (Fulton et al., 1989)

Josephson - quasiparticle (JQP) cycle

Tracing quantum oscillations: sampling technique

measurement time: 20 ms pulse array: 20ms/64 ns = 3x10⁵ pulses

•
$$I = 2e/T_r = 5 pA$$

Dc sweep + pulses (1)

Dc sweep + pulses (2)

Coherent oscillations

Y. Nakamura et al., Nature 398, 786 (1999)

Coupling two charge qubits

Capacitively-coupled charge qubits

Hamiltonian

$$\begin{split} E_{n1n2} &= E_{c1}(n_{g1} - n_{1})^{2} + E_{c2}(n_{g2} - n_{2})^{2} + E_{m}(n_{g1} - n_{1})(n_{g2} - n_{2})^{2} \\ E_{c1,2} &= 4e^{2}C_{\Sigma 2,1}/2(C_{\Sigma 1,2}C_{\Sigma 2,1} - C_{m}^{2}) \approx 4e^{2}/2C_{\Sigma 1,2} \\ n_{g1,2} &= (C_{g1,2}V_{g1,2} + C_{p}V_{p})/2e \\ E_{m} &= 4e^{2}C_{m}/(C_{\Sigma 1}C_{\Sigma 2} - C_{m}^{2}) \end{split}$$

DC measurements

From the fit: $E_{c1} = 120 \text{ GHz}$ $E_{c2} = 150 \text{ GHz}$ $E_m = 15.7 \text{ GHz}$

Oscillations at the double degeneracy $E_{00} = E_{11}$ $E_{10} = E_{01}$ I_2 1 1,0 dc gatei dc gate2 1.00um 0-0011126 15.0KV x35.0k SEL gate $n_{g1} (= n_{g2})$ $||00\rangle$ $n_{\rm g2}$ time $\left| \exp \left[-\frac{i}{\hbar} H \Delta t \right] |00\rangle = \right.$ Δt 0,1 $|\psi(\Delta t)\rangle = c_1|00\rangle + c_2|10\rangle + c_3|01\rangle + c_4|11\rangle$ Ś Х

1,0

0

()

 n_{g1}

superposition of four charge states!

Quantum beatings

$$|\psi(t)\rangle = \exp\left[-\frac{i}{\hbar}Ht\right]|00\rangle$$

$$|\psi(t)\rangle = c_{1}|00\rangle + c_{2}|10\rangle + c_{3}|01\rangle + c_{4}|11\rangle$$

$$I_{2} \propto p_{2}(1) \equiv |c_{3}|^{2} + |c_{4}|^{2} =$$

$$= \frac{1}{4}\left[2 - (1 - \chi)\cos(\Omega + \varepsilon)\Delta t\right) - (1 + \chi)\cos(\Omega - \varepsilon)\Delta t\right]$$

$$p_{1}$$

$$p_{2}$$

$$p_{2}$$

$$p_{1}$$

$$p_{2}$$

$$p_{2}$$

$$p_{1}$$

$$p_{2}$$

$$p_{1}$$

$$p_{2}$$

$$p_{2}$$

$$p_{1}$$

$$p_{2}$$

$$p_{2}$$

$$p_{2}$$

$$p_{1}$$

$$p_{2}$$

$$p_{2}$$

$$p_{2}$$

$$p_{1}$$

$$p_{2}$$

$$p_{2}$$

$$p_{2}$$

$$p_{1}$$

$$p_{2}$$

$$p_{2}$$

$$p_{2}$$

$$p_{2}$$

$$p_{2}$$

$$p_{2}$$

$$p_{3}$$

$$p_{2}$$

$$p_{3}$$

$$p_{4}$$

$$p_{2}$$

$$p_{2}$$

$$p_{2}$$

$$p_{2}$$

$$p_{2}$$

$$p_{3}$$

$$p_{2}$$

$$p_{3}$$

$$p_{4}$$

$$p_{2}$$

$$p_{2}$$

$$p_{2}$$

$$p_{2}$$

$$p_{2}$$

$$p_{3}$$

$$p_{3}$$

$$p_{4}$$

$$p_{2}$$

$$p_{2}$$

$$p_{2}$$

$$p_{3}$$

$$p_{3}$$

$$p_{4}$$

$$p_{2}$$

$$p_{2}$$

$$p_{3}$$

$$p_{3}$$

$$p_{4}$$

$$p_{2}$$

$$p_{4}$$

$$p_{2}$$

$$p_{4}$$

$$p_{2}$$

$$p_{4}$$

$$p_{2}$$

$$p_{4}$$

$$p_{2}$$

$$p_{4}$$

$$p_{2}$$

$$p_{3}$$

$$p_{4}$$

$$p_{4}$$

$$p_{4}$$

$$p_{2}$$

$$p_{4}$$

$$p_{2}$$

$$p_{4}$$

$$1.0$$

$$0.5$$

$$0.0$$

$$\Delta t$$

$$I_1 \propto p_1(1) \equiv |a_2|^2 = \frac{1}{2} \left[1 - \cos(\frac{E_{J1}}{\hbar}t) \right]$$

oscillations in gubit 1

0.5

0

1

n_{g1}

Independent oscillations (2) $|11\rangle$ resonance in the left qubit n_{g2} $|10\rangle$ $|01\rangle$ 1,1 0,1 0.5 00 1,0 $|00\rangle$ superposition of time 2 charge states Δt 0.5 1 0 n_{g1} $b_1|00 angle$ + $b_2|01 angle$

Quantum beatings: experiment

 E_{J1} dependence of frequencies

Two coupled classical oscillators

What is the difference?

oscillates:

- C.: physical parameter x
- Q.: p(x) to be 0 or 1

Entanglement of two coupled qubits

Status of Josephson charge qubits: stage of proof of concepts passed

- first solid-state qubit: coherent oscillations
- 2 qubits coupled: beatings, avoided level crossing
- \checkmark · conditional gate operation
- single-shot readout
- ? sources of decoherence